skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Hendrickson, Heather"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hendrickson, Heather (Ed.)
    Plant mitochondrial genomes (mitogenomes) experience remarkable levels of horizontal gene transfer, including the recent discovery that orchids anciently acquired DNA from fungal mitogenomes. Thus far, however, there is no evidence that any of the genes from this interkingdom horizontal gene transfer are functional in orchid mitogenomes. Here, we applied a specialized sequencing approach to the orchid Corallorhiza maculata and found that some fungal-derived tRNA genes in the transferred region are transcribed, post-transcriptionally modified, and aminoacylated. In contrast, all the transferred protein-coding sequences appear to be pseudogenes. These findings show that fungal horizontal gene transfer has altered the composition of the orchid mitochondrial tRNA pool and suggest that these foreign tRNAs function in translation. The exceptional capacity of tRNAs for horizontal gene transfer and functional replacement is further illustrated by the diversity of tRNA genes in the C. maculata mitogenome, which also include genes of plastid and bacterial origin in addition to their native mitochondrial counterparts. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Hendrickson, Heather (Ed.)
    Abstract Evolution can be contingent on history, but we do not yet have a clear understanding of the processes and dynamics that govern contingency. Here, we performed the second phase of a two-phase evolution experiment to investigate features of contingency. The first phase of the experiment was based on Escherichia coli clones that had evolved at the stressful temperature of 42.2 °C. The Phase 1 lines generally evolved through two adaptive pathways: mutations of rpoB, which encodes the beta subunit of RNA polymerase, or through rho, a transcriptional terminator. We hypothesized that epistatic interactions within the two pathways constrained their future adaptative potential, thus affecting patterns of historical contingency. Using ten different E. coli Founders representing both adaptive pathways, we performed a second phase of evolution at 19.0 °C to investigate how prior genetic divergence or adaptive pathway (rpoB vs. rho) affects evolutionary outcomes. We found that phenotype, as measured by relative fitness, was contingent on founder genotypes and pathways. This finding extended to genotypes, because E. coli from different Phase 1 histories evolved by adaptive mutations in distinct sets of genes. Our results suggest that evolution depends critically on genetic history, likely due to idiosyncratic epistatic interactions within and between evolutionary modules. 
    more » « less
  3. Hendrickson, Heather (Ed.)
    Abstract Bacteria and lytic viruses (phages) engage in highly dynamic coevolutionary interactions over time, yet we have little idea of how transient selection by phages might shape the future evolutionary trajectories of their host populations. To explore this question, we generated genetically diverse phage-resistant mutants of the bacterium Pseudomonas syringae. We subjected the panel of mutants to prolonged experimental evolution in the absence of phages. Some populations re-evolved phage sensitivity, whereas others acquired compensatory mutations that reduced the costs of resistance without altering resistance levels. To ask whether these outcomes were driven by the initial genetic mechanisms of resistance, we next evolved independent replicates of each individual mutant in the absence of phages. We found a strong signature of historical contingency: some mutations were highly reversible across replicate populations, whereas others were highly entrenched. Through whole-genome sequencing of bacteria over time, we also found that populations with the same resistance gene acquired more parallel sets of mutations than populations with different resistance genes, suggesting that compensatory adaptation is also contingent on how resistance initially evolved. Our study identifies an evolutionary ratchet in bacteria–phage coevolution and may explain previous observations that resistance persists over time in some bacterial populations but is lost in others. We add to a growing body of work describing the key role of phages in the ecological and evolutionary dynamics of their host communities. Beyond this specific trait, our study provides a new insight into the genetic architecture of historical contingency, a crucial component of interpreting and predicting evolution. 
    more » « less
  4. Hendrickson, Heather (Ed.)
    Abstract Ochrophyta is an algal group belonging to the Stramenopiles and comprises diverse lineages of algae which contribute significantly to the oceanic ecosystems as primary producers. However, early evolution of the plastid organelle in Ochrophyta is not fully understood. In this study, we provide a well-supported tree of the Stramenopiles inferred by the large-scale phylogenomic analysis that unveils the eukaryvorous (nonphotosynthetic) protist Actinophrys sol (Actinophryidae) is closely related to Ochrophyta. We used genomic and transcriptomic data generated from A. sol to detect molecular traits of its plastid and we found no evidence of plastid genome and plastid-mediated biosynthesis, consistent with previous ultrastructural studies that did not identify any plastids in Actinophryidae. Moreover, our phylogenetic analyses of particular biosynthetic pathways provide no evidence of a current and past plastid in A. sol. However, we found more than a dozen organellar aminoacyl-tRNA synthases (aaRSs) that are of algal origin. Close relationships between aaRS from A. sol and their ochrophyte homologs document gene transfer of algal genes that happened before the divergence of Actinophryidae and Ochrophyta lineages. We further showed experimentally that organellar aaRSs of A. sol are targeted exclusively to mitochondria, although organellar aaRSs in Ochrophyta are dually targeted to mitochondria and plastids. Together, our findings suggested that the last common ancestor of Actinophryidae and Ochrophyta had not yet completed the establishment of host–plastid partnership as seen in the current Ochrophyta species, but acquired at least certain nuclear-encoded genes for the plastid functions. 
    more » « less